skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pantuso, John G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Positive lightning leaders are a ubiquitous, yet poorly understood, component of lightning flashes. Upward lightning started by positive leaders may be formed when nearby storm activity induces electrical charges in a tall structure, such as communications towers or wind turbines. Alternatively, upward lightning can be triggered with the rocket‐and‐wire technique. In this paper, we introduce a new self‐consistent model for this important discharge mode, one which solves Maxwell's equations under the quasi‐electrostatic approximation. The model also includes a realistic treatment of the nonlinear plasma conductivity within the leader channel. This new computational tool explains the origin of the positive leader speed, of 10s of km/s, as well as why it displays a steady behavior over time. The model also explains the temporal evolution of current to ground measured during the early stages of rocket‐triggered lightning, where the current exhibits a series of small‐amplitude pulses, which disappear over time. The article also outlines straightforward criteria for leader inception, which may have practical applications for lightning protection. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025